• Направления биофизики. Физические процессы в организме

    29.01.2024

    Биофизика (биологическая физика) - наука о наиболее простых и фундаментальных взаимодействиях, лежащих в основе биологических процессов, протекающих на разных уровнях организации живой материи - молекулярном, клеточном, организменном и популяционном.

    Введение

    Теоретические построения и модели биофизики основаны на понятиях энергии, силы, типов взаимодействия, на общих понятиях физической и формальной кинетики, термодинамики, теории информации. Эти понятия отражают природу основных взаимодействий и законов движения материи, что, как известно, составляет предмет физики - фундаментальной естественной науки. В центре внимания биофизики как биологической науки лежат биологические процессы и явления. Основная тенденция современной биофизики - проникновение в самые глубокие, элементарные уровни, составляющие основу структурной организации живого.

    Становление и развитие биофизики тесно связано с интенсивным взаимопроникновением идей, теоретических подходов и методов современной биологии , физики, химии и математики .

    Современная классификация биофизики, принятая ИЮПАБ

    Классификация, принятая Международным союзом чистой и прикладной биофизики (1961), которая отражает основные биологические объекты в области биофизических исследований, включает следующие разделы: молекулярную биофизику, в задачу которой входит исследование физических и физико-химических свойств макромолекул и молекулярных комплексов; биофизику клетки, изучающую физико-химические основы жизнедеятельности клетки, связь молекулярной структуры мембран и клеточных органелл с их функциями, закономерности координации клеточных процессов, их механические и электрические свойства, энергетику и термодинамику клеточных процессов; биофизику сложных систем, к которым относят отдельные органеллы, целые организмы и популяции; биофизику процессов управления и регуляции, которая занимается исследованием и моделированием принципов управления в биологических системах. Выделяют также разделы биофизики: строение биополимеров (белки, ДНК, липиды), биомеханика, биологическая оптика, биомагнетизм, биологическая термодинамика. К биофизике относят и области науки, изучающие механизмы воздействий на биологические системы различных физических факторов (свет, ионизирующая радиация, электромагнитные поля и др.).

    История проникновения начал физики и математики в биологию

    Начало изучения физических свойств биологических объектов связывают с работами Г. Галилея и Р. Декарта (17 в.), заложившими основы механики, на принципах которой и делались первые попытки объяснить некоторые процессы жизнедеятельности. Декарт, например, считал, что организм человека подобен сложной машине, состоящей из тех же элементов, что и тела неорганического происхождения. Итальянский физик Дж. Борелли применил принципы механики в описании механизмов движений животных. В 1628 У. Гарвей на основе законов гидравлики описал механизм кровообращения. В 18 в. важное значение для понимания физико-химических процессов, протекающих в живых организмах, имели открытия в области физики, совершенствование её математического аппарата. Использование физических подходов дало толчок к введению в биологию экспериментальных методов и идей точных наук. Л. Эйлер математически описал движение крови по сосудам. М.В. Ломоносов высказал ряд общих суждений о природе вкусовых и зрительных ощущений, выдвинул одну из первых теорий цветового зрения. А. Лавуазье и П. Лаплас показали единство законов химии для неорганических и органических тел, установив, что процесс дыхания аналогичен медленному горению и является источником тепла для живых организмов. Творческая дискуссия между А. Вольтаи Л. Гальвани по проблеме открытия последним «живого электричества» легла в основу электрофизиологии и сыграла важную роль в исследованиях электричества в целом.

    Развитие биофизики в XIX - начале XX века

    В 19 в. развитие биологии сопровождалось обогащением знаний о физико-химических свойствах биологических структур и процессов. Огромное значение имело создание электролитической теории растворов С. Аррениуса, ионной теории биоэлектрических явлений В. Нернста . Были получены основные представления о природе и роли потенциалов действия в механизме возникновения и распространения возбуждения по нерву (Г. Гельмгольц , Э. Дюбуа-Реймон , Ю. Бернштейн, Германия); значение осмотических и электрических явлений в жизни клеток и тканей было выяснено благодаря работам Ж. Лёба (США), В. Нернста и Р. Гербера (Германия). Всё это позволило Дюбуа-Реймону сделать вывод о том, что в материальных частицах организмов не обнаруживается никаких новых сил, которые не могли бы действовать вне их. Такая принципиальная позиция положила конец объяснениям процессов жизнедеятельности действиями каких-то особых «живых факторов, не поддающихся физическим измерениям».

    Значительный вклад в развитие биофизики внесли отечественные учёные. И.М. Сеченов исследовал закономерности растворения газов в крови, биомеханику движений. Конденсаторная теория возбуждения нервных тканей, основанная на неодинаковой подвижности ионов, была предложена В.Ю. Чаговцем. К.А. Тимирязев определил фотосинтетическую активность отдельных участков солнечного спектра, установив количественные закономерности, связывающие скорость процесса фотосинтеза и поглощение хлорофиллом в листьях света разного спектрального состава. Идеи и методы физики и физической химии использовались при исследовании движения, органов слуха и зрения, фотосинтеза, механизма генерации электродвижущей силы в нерве и мышце, значения ионной среды для жизнедеятельности клеток и тканей. В 1905-15 гг. Н.К. Кольцов изучал роль физико-химических факторов (поверхностного натяжения, концентрации водородных ионов, катионов) в жизни клетки. П.П. Лазареву принадлежит заслуга в развитии ионной теории возбуждения (1916), изучении кинетики фотохимических реакций. Он создал первую советскую школу биофизиков, объединил вокруг себя большую группу крупных учёных (в их число входили С.И. Вавилов, С.В. Кравков, В.В. Шулейкин, С.В. Дерягин и др.). В 1919 им был создан в Москве Институт биологической физики Наркомздрава, где велись работы по ионной теории возбуждения, изучению кинетики реакций, идущих под действием света, исследовались спектры поглощения и флуоресценции биологических объектов, а также процессы первичного воздействия на организм различных факторов внешней среды. Огромное влияние на развитие биофизики в СССР оказали книги В.И. Вернадского (« Биосфера», 1926), Э.С. Бауэра («Теоретическая биология», 1935), Д.Л. Рубинштейна («Физико-химические основы биологии», 1932), Н.К. Кольцова («Организация клетки», 1936), Д.Н. Насонова и В.Я. Александрова («Реакция живого вещества на внешние воздействия», 1940) и др.

    Во 2-й половине 20 века успехи в биофизике непосредственно связаны с достижениями в области физики и химии, с развитием и совершенствованием методов исследований и теоретических подходов, применением электронно-вычислительной техники. С развитием биофизики в биологию проникли такие точные экспериментальные методы исследований как спектральные, изотопные, дифракционные, радиоспектроскопические. Широкое освоение атомной энергии стимулировало интерес к исследованиям в области радиобиологии и радиационной биофизики.

    Основной итог начального периода развития биофизики - это вывод о принципиальной приложимости в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи. Важное общеметодологическое значение для развития разных областей биологии имеют полученные в этот период доказательства закона сохранения энергии (первый закон термодинамики), утверждение принципов химической кинетики как основы динамического поведения биологических систем, концепция открытых систем и второго закона термодинамики в биологических системах, наконец, вывод об отсутствии каких-либо особых «живых» форм энергии. Все это во многом повлияло не развитие биологии, наряду с успехами биохимии и успехами в изучении структуры биополимеров, способствовало формированию ведущего современного направления биологической науки - физико-химической биологии , в котором биофизика занимает важное место.

    Основные направления исследований и достижения современной биофизики

    В современной биофизике можно выделить 2 основных направления, составляющих предмет биофизики, - теоретическая биофизика решает общие проблемы термодинамики биологических систем, динамической организации и регуляции биологических процессов, рассматривает физическую природу взаимодействий, определяющих структуру, устойчивость и внутримолекулярную динамическую подвижность макромолекул и их комплексов, механизмы трансформации в них энергии; и биофизика конкретных биологических процессов (биофизика клетки ), анализ которых проводится на основе общетеоретических представлений. Основная тенденция развития биофизики связана с проникновением в молекулярные механизмы, лежащие в основе биологических явлений на разных уровнях организации живого.

    На современном этапе развития биофизики произошли принципиальные сдвиги, связанные, прежде всего, с бурным развитием теоретических разделов биофизики сложных систем и молекулярной биофизики. Именно в этих областях, занимающихся закономерностями динамического поведения биологических систем и механизмами молекулярных взаимодействий в биоструктурах, получены общие результаты, на основании которых в биофизике сформировалась собственная теоретическая база. Теоретические модели, разрабатываемые в таких разделах как кинетика, термодинамика, теория регуляции биологических систем, строение биополимеров и их электронные конформационные свойства, составляют в биофизике основу для анализа конкретных биологических процессов. Создание таких моделей необходимо для выявления общих принципов фундаментальных биологически значимых взаимодействий на молекулярном и клеточном уровне, раскрытия их природы в соответствии с законами современной физики, химии с использованием новейших достижений математики и разработки на основе этого исходных обобщенных понятий, адекватных описываемым биологическим явлениям.

    Важнейшей особенностью является то, что построение моделей в биофизике требует такой модификации идей смежных точных наук, которая равносильна выработке новых понятий в этих науках в применении к анализу биологических процессов. Биологические системы сами являются источником информации, которая стимулирует развитие некоторых областей физики, химии и математики.

    В области биофизики сложных систем использование принципов химической кинетики для анализа метаболических процессов открыло широкие возможности их математического моделирования с помощью обыкновенных дифференциальных уравнений. На этом этапе было получено много важных результатов, в основном в области моделирования физиолого-биохимических процессов, динамики роста клеток и численности популяций в экологических системах. Принципиальное значение в развитии математического моделирования сложных биологических процессов имел отказ от идеи обязательного нахождения точных аналитических решений соответствующих уравнений и использование качественных методов анализа дифференциальных уравнений, которые позволяют раскрыть общие динамические особенности биологических систем. К числу этих особенностей относятся свойства стационарных состояний, их число, устойчивость, возможность переключения из одного режима в другой, наличие автоколебательных режимов, хаотизация динамических режимов.

    На этой основе были развиты представления об иерархии времен и «минимальных» и адекватных моделях, достаточно полно отражающих основные свойства объекта. Был также развит параметрический анализ динамического поведения систем, в том числе анализ базовых моделей, отражающих те или иные стороны самоорганизации биологических систем во времени и пространстве. Кроме того, все большее значение приобретает использование вероятностных моделей, которые отражают влияние стохастических факторов на детерминистсткие процессы в биологических системах. Бифуркационная зависимость динамического поведения системы от критических значений параметров отражает возникновение в системе динамической информации, которая реализуется при смене режима функционирования.

    К достижениям биофизики, имеющим общебиологическое значение, можно отнести понимание термодинамических свойств организмов и клеток, как открытых систем, формулировку на основе 2-го закона термодинамики критериев эволюции открытой системы к устойчивому состоянию (И. Пригожин ); раскрытие механизмов колебательных процессов на уровне популяций, ферментативных реакций. Исходя из теории автоволновых процессов в активных средах, установлены условия самопроизвольного возникновения диссипативных структур в гомогенных открытых системах. На этом основании строятся модели процессов морфогенеза, формирования регулярных структур при росте бактериальных культур, распространения нервного импульса и нервного возбуждения в нейронных сетях. Развивающаяся область теоретической биофизики - изучение возникновения и природы биологической информации и её связи с энтропией, условий хаотизации и образования фрактальных самоподобных структур в сложных биологических системах.

    В целом развитие единого молекулярно-кинетического описания является актуальной проблемой биофизики, которая требует разработки исходных базовых понятий. Так, в области термодинамики необратимых процессов понятие химического потенциала, зависящего от общей концентрации какого-либо компонента, и, строго говоря, понятие энтропии уже несправедливы для гетерогенных систем, далеких от равновесия. В активных макромолекулярных комплексах внутримолекулярные превращения в первую очередь зависят от характера их организации, а не от суммарной концентрации отдельных составляющих компонентов. Это требует разработки новых критериев устойчивости и направленности необратимых процессов в гетерогенных неравновесных системах.

    В молекулярной биофизике изучение конкретных биологических процессов основано на данных исследований физико-химических свойств биополимеров (белков и нуклеиновых кислот), их строения, механизмов самосборки, внутримолекулярной подвижности и т.д. Большое значение в биофизике имеет использование современных экспериментальных методов и прежде всего радиоспектроскопии (ЯМР , ЭПР ), спектрофотометрии, рентгеноструктурного анализа, электронной туннельной микроскопии, атомной силовой микроскопии, лазерной спектроскопии, различных электрометрических методов, в том числе с использованием микроэлектродной техники. Они дают возможность получать информацию о механизмах молекулярных превращений, не нарушая целостности биологических объектов. В настоящее время установлена структура около 1000 белков. Расшифровка пространственной структуры ферментов и их активного центра позволяет понять природу молекулярных механизмов ферментативного катализа, планировать на этой основе создание новых лекарственных средств. Возможности направленного синтеза биологически активных веществ, в том числе лекарственных препаратов, базируются также на фундаментальных исследованиях связи молекулярной подвижности и биологической активности таких молекул.

    В области теоретической молекулярной биофизики представления об электронно-конформационных взаимодействиях - ЭКВ (М.В. Волькенштейн ), стохастических свойствах белка (О.Б. Птицын ) составляют основу понимания принципов функционирования биомакромолекул. Специфика биологических закономерностей, полностью раскрывающихся на высших уровнях организации развитой биологической системы, тем не менее, проявляется уже на низших молекулярных уровнях живого. Трансформация энергии и появление продуктов реакции в комплексах достигается в результате внутримолекулярных взаимодействий отдельных частей макромолекулы. Отсюда логически вытекают представления о своеобразии макромолекулы как физического объекта, сочетающего в себе взаимодействия по статистическим и механическим степеням свободы. Именно представления о макромолекулах, прежде всего белковых, как своего рода молекулярных машинах (Л.А. Блюменфельд , Д.С. Чернавский ) позволяют объяснить трансформацию различных видов энергии в результате взаимодействия в пределах одной макромолекулы. Плодотворность биофизического метода анализа и построения обобщенных моделей физического взаимодействия сказывается в том, что принцип ЭКВ позволяет с единых общенаучных позиций рассматривать функционирование молекулярных машин, казалось бы, далеких друг от друга по своей биологической роли - например, молекулярных комплексов, участвующих в первичных процессах фотосинтеза и зрения, фермент-субстратных комплексов ферментативных реакций, молекулярных механизмов работы АТФ-синтетазы, а также переноса ионов через биологические мембраны.

    Биофизика изучает свойства биологических мембран , их молекулярную организацию, конформационную подвижность белковых и липидных компонентов, их устойчивость к действию температуры, перекисному окислению липидов, их проницаемость для неэлектролитов и для различных ионов, молекулярное строение и механизмы функционирования ионных каналов, межклеточные взаимодействия. Большое внимание уделяется механизмам преобразования энергии в биоструктурах (см. ст. Биоэнергетика ), где они сопряжены с переносом электронов и с трансформацией энергии электронного возбуждения. Раскрыта роль свободных радикалов в живых системах и их значение в поражающем действии ионизирующей радиации, а также в развитии ряда других патологических процессов (Н.М. Эмануэль , Б.Н. Тарусов). Один из разделов биофизики, пограничных с биохимией - механохимия, изучает механизмы взаимопревращений химической и механической энергии, связанные с сокращением мышц, движением ресничек и жгутиков, перемещением органелл и протоплазмы в клетках. Важное место занимает «квантовая» биофизика, изучающая первичные процессы взаимодействия биологических структур с квантами света (фотосинтез , зрение , воздействие на кожные покровы и т.д.), механизмы биолюминесценции и фототропных реакций, действия ультрафиолетового и видимого света (фотодинамические эффекты ) на биологические объекты. Еще в 40-х гг. 20 в. А.Н. Теренин раскрыл роль триплетных состояний в фотохимических и ряде фотобиологических процессов . А.А. Красновский показал способность возбужденного светом хлорофилла к окислительно-восстановительным превращениям, лежащим в основе первичных процессов фотосинтеза . Современные методы лазерной спектроскопии дают непосредственную информацию о кинетике соответствующих фотоиндуцированных электронных переходов, колебаниях атомных групп в диапазоне от 50-100 фемтосекунд до 10 -12 -10 -6 с и более.

    Идеи и методы биофизики не только находят широкое применение при изучении биологических процессов на макромолекулярном и клеточном уровнях, но и распространяются, особенно в последние годы, на популяционный и экосистемный уровни организации живой природы.

    Достижения в биофизике в большой степени используются в медицине и экологии. Медицинская биофизика занимается выявлением в организме (клетке) на молекулярном уровне начальных стадий патологических изменений. Ранняя диагностика заболеваний основана на регистрации спектральных изменений, люминесценции, электрической проводимости образцов крови и тканей, сопровождающих заболевание (например, по уровню хемилюминесценции можно судить о характере перекисного окисления липидов). анализирует молекулярные механизмы действия абиотических факторов (температура, свет электромагнитные поля, антропогенные загрязнения и др.) на биологические структуры, жизнеспособность и устойчивость организмов. Важнейшей задачей экологической биофизики является развитие экспресс методов для оценки состояния экосистем. В этой области одной из важнейших задач становится оценка токсичности принципиально новых материалов - наноматериалов, а также механизмов их взаимодействия с биологическими системами.

    В России исследования по биофизике проводятся в ряде научно-исследовательских институтов и ВУЗов. Одно из ведущих мест принадлежит научному центру в г. Пущино, где в 1962 был организован Институт биологической физики АН СССР, который позднее разделился на Институт биофизики клетки РАН (директор - чл.-корр. РАН Е.Е.Фесенко) и Институт теоретической и экспериментальной биофизики РАН (директор - чл.-корр. РАН Г.Р. Иваницкий . Биофизика активно развивается в Институте биофизики МЗ РФ , Институте молекулярной биологии РАН и Институте белка РАН , Институте биофизики СО РАН (директор - чл.-корр. РАН Дегермеджи А.Г. ), в университетах Москвы. С.-Петербурга и Воронежа, в , в и др.

    Развитие биофизического образования в России

    Параллельно с развитием исследований шло формирование базы для подготовки специалистов в области биофизики. Первая в СССР кафедра биофизики на биолого-почвенном факультете МГУ была организована в 1953 г. (Б. Н. Тарусов), а в 1959 была открыта кафедра биофизики на физическом факультете МГУ (Л.А. Блюменфельд). Обе эти кафедры являются не только образовательными центрами, готовящими квалифицированных специалистов-биофизиков, но и крупными научно-исследовательскими центрами. Кафедры биофизики затем были организованы в ряде других ВУЗов страны, в том числе в Государственном университете «Московский физико-технический институт» , в Национальном исследовательском ядерном университете «МИФИ» , а также в ведущих медицинских университетах. Курс биофизики читается во всех университетах страны. Биофизические исследования проводятся в институтах и университетах во многих странах мира. Международные конгрессы по биофизике проводятся регулярно каждые 3 года. Общества биофизиков существуют в США, Великобритании и ряде других стран. В России Научный совет по биофизике при РАН координирует научную работу, осуществляет международные связи. Секция биофизики имеется при Московском обществе испытателей природы.

    Среди периодических изданий, в которых публикуются статьи по биофизике: «Биофизика» (М., 1956 —); «Молекулярная биология» (М., 1967 —); «Радиобиология» (М., 1961 — в настоящее время «Радиационная биология. Радиоэкология»); «Биологические мембраны» (М., 19 —) .«Advances in Biological and Medical Physics» (N.Y., 1948 —); «Biochimica et Biophysica Acta» (N.Y. - Amst., 1947 —); «Biophysical Journal» (N.Y., I960 —); «Bulletin of Mathematical Biophysics» (Chi, 1939 —); «Journal of Cell Biology» (N.Y., 1962 — . В 1955 — 1961 «Journal of Biophysical and Biochemical Cytology»); «Journal of Molecular Biology» (N.Y. - L., 1959 —); «Journal of Ultrastructure Research» (N.Y. - L., 1957 —)» «Progress in Biophysics and Biophysical Chemistry» (L., 1950 —) ; European Journal of biophysics (); Jurnal of Theoretical biology (1961).

    Рекомендуемая литература

    Блюменфельд Л.А . Проблемы биологической физики. М., 1977

    Волькенштейн М.В. Биофизика. М., 1981

    М. Джаксон . Молекулярная и клеточная биофизика. М., «Мир». 2009

    Николис Г., Пригожин И . Самоорганизация в неравновесных структурах. пер. с англ. М., 1979;

    Рубин А.Б. Биофизика. Т. I. М., 2004. Т. 2. М., 2004 (изд. 3-е)

    А.В., Птицын О.Б. Физика белка. М., 2002.

    Одной из самых древних наук является, безусловно, биология. Интерес людей к процессам, происходящим внутри них самих и окружающих существ, возник за несколько тысяч лет до нашей эры.

    Наблюдения за животными, растениями, природными процессами составляло важную часть жизни людей. С течением времени знаний накопилось очень много, усовершенствовались и развились методы изучения живой природы и механизмов, в ней происходящих. Это привело к возникновению множества разделов, составляющих в общей сложности комплексную науку.

    Биологические исследования в разных областях жизни позволяют получать новые ценные данные, важные для понимания устройства биомассы планеты. Использовать эти знания для практических целей человека (освоение космоса, медицина, сельское хозяйство, химическая промышленность и так далее).

    Многие открытия позволили сделать биологические исследования в сфере внутреннего строения и функционирования всех живых систем. Изучен молекулярный состав организмов, их микростроение, выделены и изучены многие гены из генома человека и животных, растений. Заслуги биотехнологии, клеточной и позволяют получать несколько урожаев растений за сезон, а также выводить породы животных, дающих больше мяса, молока и яиц.

    Изучение микроорганизмов позволило получить антибиотики и создать десятки и сотни вакцин, позволяющих побеждать множество болезней, даже те, что раньше целыми эпидемиями уносили тысячи жизней людей и животных.

    Поэтому современная наука биология - это безграничные возможности человечества во многих отраслях науки, промышленности и сохранении здоровья.

    Классификация биологических наук

    Одними из самых первых появились частные разделы науки биологии. Такие, как ботаника, зоология, анатомия и систематика. Позже стали формироваться более зависимые от технического оснащения дисциплины - микробиология, вирусология, физиология и так далее.

    Существует ряд молодых и прогрессивных наук, сформировавшихся только в XX-XXI столетии и играющих большую роль в современном развитии биологии.

    Существует не одна, а несколько классификаций, по которым можно ранжировать биологические науки. Список их довольно внушительный во всех случаях, рассмотрим одну из них.

    Биология Частные науки Ботаника занимается изучением внешнего и внутреннего строения, физиологических процессов, филогенеза и распространения в природе всех существующих на планете растений (флора)

    Включает следующие разделы:

    • альгология;
    • дендрология;
    • систематика;
    • анатомия;
    • морфология;
    • физиология;
    • бриология;
    • палеоботаника;
    • экология;
    • геоботаника;
    • этноботаника;
    • размножение растений.
    Зоология занимается изучением внешнего и внутреннего строения, физиологических процессов, филогенеза и распространения в природе всех существующих на планете животных (фауна)

    Дисциплины, входящие в состав:

    Дисциплины:

    • топографическая анатомия;
    • сравнительная;
    • систематическая;
    • возрастная;
    • пластическая;
    • функциональная;
    • экспериментальная.
    Антропология ряд дисциплин, в комплексе изучающих развитие и формирование человека в биологической и социальной среде Разделы: философская, судебная, религиозная, физическая, социальная, культурная, визуальная.
    Микробиология изучает самые мелкие организмы живой природы, от до бактерий и вирусов Дисциплины: вирусология, бактериология, медицинская микробиология, микология, промышленная, техническая, сельскохозяйственная, космическая микробиология

    Общие науки

    Систематика в задачи входит разработка основ для классификации всего живого на нашей планете с целью строгой упорядоченности и идентификации любого представителя биомассы
    Морфология описание внешних признаков, внутреннего строения и топографии органов всех живых существ Разделы: растений, животных, микроорганизмов, грибов
    Физиология изучает особенности функционирования той или иной системы, органа или части организма, механизмы всех процессов, обеспечивающих его жизнедеятельность Растений, животных, человека, микроорганизмов
    Экология наука о взаимоотношениях живых существ друг с другом, средой обитания и человеком Геоэкология, общая, социальная, промышленная
    Генетика изучает геном живых существ, механизмы наследственности и изменчивости признаков под влиянием различных условий, а также исторические изменения в генотипе в течение эволюционных преобразований

    Биогеография

    рассматривает расселение и распространение отдельных видов живых существ по планете

    Эволюционное учение

    раскрывает механизмы исторического развития человека и других живых систем на планете. Их происхождение и становление
    Комплексные науки, возникшие на стыке друг с другом

    Биохимия

    изучает процессы, происходящие в клетках живых существ с химической точки зрения

    Биотехнология

    рассматривает возможности использования организмов, их продуктов и или частей для нужд человека

    Молекулярная биология

    изучает механизмы передачи, хранения и использования наследственной информации живыми существами, а также функции и тонкое строение белков, ДНК и РНК. Смежные науки: генная и клеточная инженерия, молекулярная генетика, биоинформатика, протеомика, геномика

    Биофизика

    это наука, изучающая все возможные физические процессы, происходящие во всех живых организмах, от вирусов до человека Разделы данной дисциплины будут рассмотрены ниже

    Таким образом, мы постарались охватить основное разнообразие, которое представляют собой биологические науки. Список этот с развитием техники и методов изучения расширяется, пополняется. Поэтому единой классификации биологии не существует на сегодняшний день.

    Прогрессивные бионауки и их значение

    К самым молодым, современным и прогрессивным наукам биологии относятся такие, как:

    • биотехнология;
    • молекулярная биология;
    • космическая биология;
    • биофизика;
    • биохимия.

    Каждая из этих наук сформировалась не ранее XX века, а потому по праву считается молодой, интенсивно развивающейся и наиболее значимой для практической деятельности человека.

    Остановимся на такой из них, как биофизика. Это наука, появившаяся приблизительно в 1945 году и ставшая важной частью всей биологической системы.

    Что такое биофизика?

    Чтобы ответить на этот вопрос, в первую очередь следует указать на ее тесный контакт с химией и биологией. В некоторых вопросах границы между этими науками настолько тесные, что сложно разобрать, какая из них конкретно задействована и в приоритете. Поэтому рассматривать биофизику стоит как комплексную науку, изучающую глубокие физические и химические процессы, происходящие в живых системах на уровне как молекул, клеток, органов, так и на уровне Биосферы в целом.

    Как и любая другая, биофизика - наука, имеющая свой объект изучения, цели и задачи, а также достойные и значимые результаты. Кроме того, эта дисциплина плотно коррелирует с несколькими новыми направлениями.

    Объекты исследования

    Ими для биофизики являются биосистемы на разных организационных уровнях.

    1. вирусы, одноклеточные грибы и водоросли).
    2. Простейшие животные.
    3. Отдельные клетки и их структурные части (органеллы).
    4. Растения.
    5. Животные (в том числе человек).
    6. Экологические сообщества.

    То есть биофизика - это исследование живого с точки зрения физических процессов, в нем происходящих.

    Задачи науки

    Первоначально задачи биофизиков были в том, чтобы доказать наличие физических процессов и явлений в жизнедеятельности живых существ и изучить их, выяснив природу и значение.

    Современные задачи данной науки можно сформулировать так:

    1. Изучить структуру генов и механизмы, сопровождающие их передачу и хранение, видоизменения (мутации).
    2. Рассмотреть многие аспекты клеточной биологии (взаимодействие клеток друг с другом, хромосомные и генетические взаимодействия и другие процессы).
    3. Изучить в комплексе с молекулярной биологией молекулы полимеров (белков, нуклеиновых кислот, полисахаридов).
    4. Выявить влияние космогеофизических факторов на течение всех физических и химических процессов в живых организмах.
    5. Более глубоко вскрыть механизмы фотобиологии (фотосинтез, фотопериодизм и так далее).
    6. Внедрить и разработать методы математического моделирования.
    7. Применить результаты нанотехнологии для изучения живых систем.

    Из этого списка очевидно, что биофизика изучает очень много значимых и серьезных проблем современного общества, и результаты деятельности этой науки имеют важное значение для человека и его жизни.

    История формирования

    Как наука биофизика зародилась сравнительно недавно - в 1945 году, когда издал свой труд "Что такое жизнь с точки зрения физики". Именно он первым заметил и обозначил, что многие законы физики (термодинамические, законы квантовой механики) имеют место быть именно в жизнедеятельности и работе организмов живых существ.

    Благодаря трудам этого человека наука биофизика начала свое интенсивное развитие. Однако еще ранее, в 1922 году, в России создается институт биофизики, которым руководит П. П. Лазарев. Там основную роль отводят изучению природы возбуждения в тканях и органах. Результатом стало выявление значение ионов в этом процессе.

    1. Гальвани открывает электричество и его значение для живых тканей (биоэлектричество).
    2. А. Л. Чижевский - отец нескольких дисциплин, изучающих влияние космоса на Биосферу, а также ионизационное излучение и электрогемодинамику.
    3. Подробная структура белковых молекул была изучена только после открытия метода РСА (рентгено-структурного анализа). Это было сделано учеными Перуц и Кендрю (1962 год).
    4. В этом же году открыта трехмерная структура ДНК (Морис Уилкинс).
    5. Неэр и Закман в 1991 году сумели разработать метод локальной фиксации электрического потенциала.

    Также ряд других открытий позволил науке биофизике встать на путь интенсивной и прогрессивной модернизации в развитии и становлении.

    Разделы биофизики

    Существует целый ряд дисциплин, составляющих эту науку. Рассмотрим самые основные из них.

    1. Биофизика сложных систем - рассматривает все сложные механизмы саморегуляции многоклеточных организмов (системогенез, морфогенез, синергогенез). Также данной дисциплиной изучаются особенности физической составляющей процессов онтогенеза и эволюционного развития, уровней организации организмов.
    2. Биоакустика и биофизика сенсорных систем - изучает сенсорные системы живых организмов (зрение, слух, рецепция, речь и другие), способы трансляции различных сигналов. Выявляет механизмы преобразования энергии при восприятии организмами внешних воздействий (раздражений).
    3. Теоретическая биофизика - включает ряд поднаук, занимающихся изучением термодинамики биологических процессов, построением математических моделей структурных частей организмов. Также рассматривает кинетические процессы.
    4. Молекулярная биофизика - рассматривает глубокие механизмы структурной организации и функционирования таких биополимеров, как ДНК, РНК, белки, полисахариды. Занимается построением моделей и графических изображений этих молекул, прогнозирует поведение и формирование их в живых системах. Также данная дисциплина строит надмолекулярные и субмолекулярные системы с целью определения механизма построения и действия биополимеров в живых системах.
    5. Биофизика клетки. Изучает самые важные клеточные процессы: дифференцирование, деление, возбуждение и биопотенциалы мембранной структуры. Особое внимание уделяется механизмам мембранного транспорта веществ, разности потенциалов, свойствам и структуре мембраны и окружающих ее частей.
    6. Биофизика метаболизма. Основные рассматриваемые соляризация и адаптация к ней организмов, гемодинамика, теплорегуляция, метаболизм, влияние ионизационных лучей.
    7. Прикладная биофизика. Состоит из нескольких дисциплин: биоинформатика, биометрия, биомеханика, исследование эволюционных процессов и онтогенеза, патологическая (медицинская) биофизика. Объекты изучения прикладной биофизики - опорно-двигательный аппарат, способы движения, способы распознавания людей по физическим чертам. Особого внимания заслуживает медицинская биофизика. Она рассматривает патологические процессы в организмах, способы реконструкции поврежденных участков молекул или структур или их компенсацию. Дает материал для биотехнологии. Имеет большое значение в предупреждении развития заболеваний, особенно генетического характера, их устранении и объяснении механизмов воздействия.
    8. Биофизика среды обитания - изучает физическое воздействие как местных сред обитания существ, так и влияние ближних и дальних субъектов космического пространства. Также рассматривает биоритмы, влияние погодных условий и биополей на существа. Разрабатывает приемы мероприятий по профилактике негативных воздействий

    Все эти дисциплины вносят колоссальный вклад в развитие понимания механизмов жизнедеятельности живых систем, влияния на них биосферы и различных условий.

    Современные достижения

    Можно назвать несколько самых значительных событий, которые относятся к достижениям биофизики:

    • вскрыты механизмы клонирования организмов;
    • изучены особенности превращений и роли окиси азота в живых системах;
    • установлена взаимосвязь малых и матричных РНК, что в будущем позволит найти решение многих медицинских проблем (устранения заболеваний);
    • открыта физическая природа автоволн;
    • благодаря работам молекулярных биофизиков изучены аспекты синтеза и репликации ДНК, что повлекло за собой возможность создания целого ряда новых лекарств от серьезных и сложных заболеваний;
    • созданы компьютерные модели всех реакций, сопровождающих процесс фотосинтеза;
    • разработаны методы ультразвукового исследования организма;
    • установлена связь между космогеофизическими и биохимическими процессами;
    • предсказано изменение климата на планете;
    • открытие значения фермента урокеназы в предупреждении заболеваний тромбозов и устранения последствий после инсультов;
    • также сделан ряд открытий по структуре белка, кровеносной системе и другим частям организма.

    Институт биофизики в России

    В нашей стране существует им. М. В. Ломоносова. На базе этого учебного заведения действует факультет биофизики. Именно он осуществляет подготовку квалифицированных специалистов для работы в этой области.

    Очень важно дать качественный старт будущим профессионалам. Их ждет сложная работа. Биофизик обязан разбираться во всех тонкостях процессов, происходящих в живых существах. Кроме того, студенты должны разбираться и в физике. Ведь это комплексная наука - биофизика. Лекции строятся таким образом, чтобы объять все дисциплины, связанные и составляющие биофизику, и охватить рассмотрение вопросов как биологического, так и физического характера.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    ФИЗИОЛОГИЯ И БИОФИ3ИКА ВО3БУДИМЫX КЛЕТОК

    Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей

    Раздражимость - это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например изменением метаболизма.

    Возбудимость - это способность живой ткани отвечать на раздражение активной специфической реакцией - возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани - нервную, мышечные, железистые, которые называются возбудимыми. Возбуждение - это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д. Возбудимые ткани обладают проводимостью. Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

    Раздражитель - это фактор внешней или внутренней среды действующий на живую ткань.

    Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.

    Все раздражители делятся на следующие группы: 1.По природе

    а) физические (электричество, свет, звук, механические воздействия и т.д.)

    б) химические (кислоты, щелочи, гормоны и т.д.)

    в) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

    г) биологические (пища для животного, особь другого пола)

    д) социальные (слово для человека). 2.По месту воздействия:

    а) внешние (экзогенные)

    б) внутренние (эндогенные) З.По силе:

    а) подпороговые (не вызывающие ответной реакции)

    б) пороговые (раздражители минимальной силы, при которой возникает возбуждение)

    в) сверхпороговые (силой выше пороговой) 4.По физиологическому характеру:

    а) адекватные (физиологичные для данной клетки или рецептора, которые приспособились к нему в |процессе эволюции, например, свет для фоторецепторов глаза).

    б) неадекватные

    Если реакция на раздражитель является рефлекторной, то выделяют также:

    а) безусловно-рефлекторные раздражители

    б) условно-рефлекторные

    Законы раздражения. Параметры возбудимости

    Реакция клеток, тканей на раздражитель определяется законами раздражения

    I .Закон «все или ничего»: При допороговых раздражениях клетки, ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

    2. 3акон силы: Чем больше сила раздражителя, тем сильнее ответная реакция Однако выраженностъ ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, умеющих различную возбудимость.

    3.Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы-длительности. По этой кривой можно определить ряд параметров возбудимости, а) Порог раздражения - это минимальная сила раздражителя, при которой возникает возбуждение.

    б) Реобаза - это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

    в) Полезное время - это минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

    г) Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения. Этот параметр предложил рассчитывать Л. Лапик, для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия, тем выше возбудимость и наоборот.

    В клинической практике реобазу и хронаксиго определяют, с помощью метода хронаксиметрии для исследования возбудимости нервных стволов.

    4. Закон градиента или аккомодации. Реакция ткани на раздражение зависит от его градиента, Т.е. чем быстрее нарастает сила раздражителя во времени тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому если сила раздражителя возрастает очень медленно возбуждения не будет. Это явление называется аккомодацией.

    Физиологическая лабильность (подвижность) - это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем выше ее лабильность. Определение лабильности, предложено Н.Е. Введенским. Наибольшая лабильность у нервов, наименьшая у сердечной мышцы.

    Действие постоянного тока на возбудимые ткани

    Впервые закономерности действия достоянного тока на нерв нервно-мышечного препарата исследовал в 19 веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным электродом, т.е. катодом возбудимость повышается, а под положительным - анодом, снижается. Это называется законом действия постоянного тока. Изменение возбудимости ткани (например, нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном. Под положительным - анодом,» он возрастает. Возникает физический анэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризация, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мсек и менее)МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

    Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физиопроцедуры: ионофорез и гальванизация.

    Строение и функции цит оплазматнческой мембраны клеток

    Цитоллазматическая клеточная мембрана состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя лилидов и внутреннего белкового. Толщина мембраны 7,5-10 нМ. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами, погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды, 15-30% холестерин. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрану и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они, также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану. Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать с различными ФАВ.

    Функции мембраны:

    1. Обеспечивает целостность клетки, как структурной единицы ткани.

    2. Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью.

    3. Обеспечиваег активны и транспорт ионов и других веществ в клетку и из нее

    4. Производит восприятие и переработку информации поступающей к клетке в виде химических и электрических сигналов.

    Механизмы возбудимости клеток. Ионные каналы мембраны. Механизмы возникновения мембранного потенциала (МЛ) и потенциалов действия (ПД)

    В основном, передаваемая в организме информация имеет вид электрических сигналов (например нервные импульсы). Впервые наличие животного электричества установил физиолог Л Гальвани в 1786 г. С целью исследования атмосферного электричества он подвешивал нервно-мышечные препараты лапок лягушек на медном крючке. Когда эти лапки касались железных перил балкона, происходило сокращение мышц. Это свидетельствовало о действия какого-то электричества на нерв нервно-мышечного препарата. Гальвани посчитал, что это обусловлено наличием электричества в самих живых тканях. Однако, А. Вольта установил, что источником электричества является место контакта двух разнородных металлов - меди и железа. В физиологии первым классическим опытом Гальвани считается прикосновение к нерву нервно-мышечного препарата биметаллическим пинцетом, сделанным из меди и железа. Чтобы доказать свою правоту, Гальвани произвел второй опыт. Он набрасывал конец нерва, иннервирующего нервно-мышечный препарат, на разрез его мышцы. В результате возникало ее сокращение. Однако и этот опыт не убедил современников Гальвани. Поэтому другой итальянец Маттеучи произвел следующий эксперимент. Он накладывал нерв одного нервно-мышечного препарата лягушки на мышцу второго, которая сокращалась под действием раздражающего тока. В результате первый препарат тоже начинал сокращаться. Это свидетельствовало о передаче электричества (ПД) от одной мышце к другой. Наличие разности потенциалов между поврежденным и неповрежденным участками мышцы впервые точно установил в 19 веке с помощью струнного гальванометра (амперметра) Маттеучи. Причем разрез имел отрицательный заряд, а поверхность мышцы положительный.

    Классификация и структура ионных каналов цито плазматической мембраны. Механизмы возникновения мембранного потенциала и потенциалов действия

    Первый шаг в изучении причин возбудимости клеток сделал в своей работе «Теория мембранного равновесия» в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенциалов внутри клетки и вне ее, т.е. потенциала покоя или МП, близка к калиевому равновесному потенциалу. Это потенциал, образующемуся на полупроницаемой мембране разделяющий растворы с разной концентрацией ионов калия, один из которых содержит крупные непроникающие анионы. Его расчеты уточнил Нернст. Он вывел уравнение диффузионного потенциала для калия он будет равен:

    Ек=58 Jg--------= 58 lg-----= - 75 мВ,

    такова теоретически рассчитанная величина мП.

    Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой, а также возбуждения клеток установили в 1939 году в Кембридже Ходжкин и Хаксли. Они исследовали гигантское нервное волокно (аксон) кальмара и обнаружили, что внутриклеточная жидкость нейрона содержит 400 мМ калия, 50 мМ натрия, 100 мМ хлора и очень мало кальция. Во внеклеточной жидкости содержалось всего 10 мМ калия, 440 мМ натрия, 560 мМ хлора и 10 мМ кальция. Таким образом, внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем, что в клеточную мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора

    Все ионные каналы подразделяются на следующие группы: 1. По избирательности:

    а)Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов. б)Малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество. 2.По характеру пропускаемых ионов:

    а) калиевые

    б) натриевые

    в) кальциевые

    г) хлорные

    З. По скорости инактивации, т.е. закрывания:

    а) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

    б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

    4. По механизмам открывания:

    а) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны.

    б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (нейромедиаторов, гормонов и т. д).

    В настоящее время установлено, что ионные каналы имеют следующее строение: 1 .Селективный фильтр, расположенный в устье канала Он обеспечивает прохождение через канал строго определенных ионов.

    2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активациониые ворота потенциалзав.исимых каналов имеется сенсор, который открывает их на определенном уровне МП.

    З.Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП. (Рис).

    Неспецифические ионные каналы не имеют ворот.

    Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением актикационных (м) и инактивационных (h) ворот (рис): 1 .Закрытом, когда активационные закрыты, а инактивационные открыты. 2. Активированном, и те и другие ворота открыты. З.Инактивированном, активационные ворота открыты, а инактивационные закрыты.

    Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны для калия и натрия в состоянии покоя составляет 1:0,04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает апектрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов. Рис.

    Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е. накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ионы. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет 55-70 мВ, поперечно-полосатых - 90-100 мВ, гладких мышц - 40-60 мВ, железистых клеток - 20-45 мВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину уменьшают ионы натрия, для которых мембрана незначительно проницаема и они могут входить в цитоплазму. С другой стороны, отрицательные иолы хлора, поступающие в клетку, несколько увеличивают МП.

    Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих конов из клетки. Это связано с гем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрий-кал.иевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны. Натрий-калиевый насос - это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет.АТФ и.использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит

    2 иона калия. Так как в клетку поступает меньше положительно заряженных ионов, чем выводится из неё, натрий-калиевая АТФ-аза на 5-10 мВ увеличивает мембранный потенциал.

    В мембране имеются следующие механизмы трансмембранного транспорта ионов и других веществ: 1. Активный транспорт. Он осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калиевый насос, кальциевый насос, хлорный насос.

    2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неб.по калиевым каналам.

    3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например таким образом происходит натрий-натриевый, натрий-кальциевый, калий -калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

    Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкМ стеклянный микроэлектрод Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец.

    Дальнейшие исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму. пика (spike). Они назвали это колебание потенциалом действия (ПД). Так как электрический ток для: возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны отрицательный электрод - катод, а внутреннюю положительный- анод. Это -приведет к снижению величины заряда мембраны - ее деполяризации. При действии слабого допорогового тока происходит пассивная деполяризация, т.е. возникает катэлектротон (рис). Если силу тока увеличить до определенного предела, то в конце периода его воздействия на плато катэлектротона появится небольшой самопроизвольный подъём - местный или локальный ответ. Он является следствием открывания небольшой части натриевых каналов, находящихся под катодом. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация потенциала действия. Он находится для нейронов примерно на уровне - 50 мВ.

    На кривой потенциала действия выделяют следующие фазы: 1 .Локальный ответ (местная деполяризация), предшествующий развитию ПД.

    2.Фаза деполяризации. Во гремя этой фазы МП быстро уменьшается и достигает нулевого уровни. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд -внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2 мсек.

    З.Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазы 3-5 мсек.

    4.Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длится.15-30 мсек.

    5.Фаза следовой гиперполяризации или следового положительного потенциала В эту фазу, МП на некоторое время становится выше исходного уровня ПП. Бе длительность 250-300 мсек.

    Амплитуда потенциала действия скелетных мышц в среднем: 120-130 иВ, нейронов 80-90 мВ, гладкомышечных клеток 40-50 мВ. При возбуждении нейронов ПД возникает в начальном сегменте аксона - аксонном холмике.

    Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня деполяризации, чем она выше, тем ниже КУД и наоборот.

    Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ). сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока

    Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и активационных ворот натриевых канапов, что еще больше снижает натриевую проницаемость мембраны и ускоряет реполяризацию.

    Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

    Следовая гиперполяризация связана с повышенной, после ПД калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос, выносящий вошедшие в клетку во время ПД ионы натрия.

    Изменяя проводимость быстрых натриевых и калиевых каналов можно влиять на генерацию ПД, а следовательно на возбуждение клеток. При полной блокада натриевых каналов, например ядом рыбы тетродонта - тетродотоксином, клетка становится невозбудимой. Это используется в клинике. Такие местные анестетики, как новокаин, дикаин, лидокаин тормозят переход натриевых каналов нервных волокон в открытое состояние. Поэтому проведение нервных импульсов по чувствительным нервам прекращается, наступает обезболивание (анестезия) органа При блокаде калиевых каналов затрудняется выход ионов калия из цитоплазмы на наружную поверхность мембраны, т.е. восстановление МП. Поэтому удлиняется фаза реполяризации. Этот эффект блокаторов калиевых каналов также используется в клинической практике. Например, один из них хинидин, удлиняя фазу реполяризации кардиомиоцитов, урежает сердечные сокращения и нормализует сердечньшритм.

    Также следует отметить, что чем выше скорость распространения ПД по мембране -клетки, ткани, тем выше ее проводимость.

    Соотношение фаз потенциала действия и возбудимости

    Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением.

    В фазу реполяризации ПД когда открываются «все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности.

    В фазе реполяразации все болыпаяг часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. - Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или относительной рефрактерности.

    Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение слетки. Следовательно, в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

    В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление аккомодации также связано с изменением проводимости ионных.каналов. Если деполяризующий ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

    Физиология мышц

    В организме имеются 3 типа мышц: скелетные или поперечно-полосатые, гладкие и сердечная. Скелетные мышцы обеспечивают перемещение тела в пространстве, поддержание позы тела за счет тонуса мышц конечностей и тела Гладкие мышцы необходимы для перистальтики органов желудочно-кишечного тракта, мочевыводящей системы, регуляции тонуса сосудов, бронхов и т.д. Сердечная мышца служит для сокращения сердца и перекачивания крови. Все мышцы обладают возбудимостью, проводимостью и сократимостью, а сердечная и многие гладкие мышцы автоматией - способностью к самопроизвольным сокращениям.

    Ультраструктура скелетного мышечного волокна

    Двигательные единицы Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Оиа включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной; группы мышечных волокон.

    Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Каждое волокно -это клетка цилиндрической формы диаметром 10-100 мкм и длиной от 5 до 400 мкм. Оно имеет клеточную мембрану - сарколемму- В саркоплазме находится несколько ядер, митохондрии, образования саркоплазматического ретикулума (СР) и сократительные элементы -миофибриллы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн. Поперечные трубочки-это впячивания саркоплазмы внутрь клетки. К ним примыкают продольные трубочки с цистерначи. Благодаря этому, потенциал действия может распространятся от сарколеммы на систему саркоплазматического ретикулума. В мышечном волокне содержится более 1000 миофибрилл, расположенных вдоль него. Каждая миофибрилла состоит из 2500 протофибрилл или миофиламентов. Это нити сократительных белков актина и миозина. Миозиновые протофибриллы толстые, актиновые тонкие.

    На миозиновых нитях расположены отходящие под углом поперечные отростки с головками. У скелетного мышечного волокна при световой микроскопии видна поперечная исчерченность, т.е. чередование светлых и темных полос. Темные полосы называют А-дисками или анизотропными, светлые I-дисками (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. 1-диски образованы нитями актина. В центре 1-дисков видна тонкая Z-пластинка. К ней прикрепляются актиновые протофибриллы. Участок миофибриллы между двумя Z-лластинками называется саркомером. Это структурный элемент миофибрилл. В покое толстые миозин"овые нити лишь на небольшое расстояние входят в промежутки между актиновыми. Поэтому в средней части А-дисха имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-линия. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы (рис).

    Механизмы мышечного сокращения

    При световой микроскопии было замечено, что в момент сокращения ширина А-диска не уменьшается, а 1-диски и Н-зоны саркомеров суживаются. С помощью электронной микроскопии установлено, что длина нитей актина л миозина в момент сокращения не изменяется. Поэтому Хаксли и Хэнсон разработали теорию скольжения нитей. Согласно ей мышца укорачивается в результате движения тонких актиновых нитей в промежутки между миозиновыми. Это приводит к укорочению каждого саркомера, образующего миофибриллы. Скольжение же нитей обусловлено тем, что при переходе в активное состояние головки отростков миозина связываются с центрами актиновых нитей и вызывают их движение относительно себя (гребковые движения). Но это последний этап всего сократительного механизма. Сокращение начинается с того, что в области концевой пластинки двигательного нерва возникает ПД. Он с большой скоростью распространяется по сарколемме и переходит с неё по системе поперечных трубочек СР, на продольные трубочки и цистерны. Возникает деполяризация мембраны цистерн и из них в саркоплазму высвобождаются ионы кальция. На нитях актина расположены молекулы еще двух белков -тропонина и тропомиозина При низкой (менее 10-8 М) концентрации кальция, т.е. в состояния покоя, тропомиозин блокирует присоединение мостиков миозина к нитям актина Когда ионы кальция начинают выходить из СР, молекула тропонина изменяет свою форму таким образом, что освобождает активные центры актина от тропомиозина. К этим центрам присоединяются головки миозина и начинается скольжение за счет ритмического прикрепления я разъединения поперечных мостиков с нитями актина При этом головки ритмически продвигаются по нитям: актина к Z-мембранам. Для полного сокращения мышцы необходимо 50 таких циклов. Передача сигнала от возбужденной мембраны к миофибриллам называется электромеханическим сопряжением. Когда генерация ПД прекращается и мембранный потенциал, возвращается к исходному уровню, начинает работать Са-насос (фермент Са-АТФаза). Ионы кальция вновь закачиваются в цистерны саркоплазматического ретикулума и их концентрация падает ниже 10-8 М. Молекулы тропонина приобретают исходную форму и тропомиозин вновь начинает блокировать активные центры актина. Головки миозина отсоединяются от них и мышца за счет эластичности приходит в исходное расслабленное состояние.

    Энергетика мышечного сокращения

    Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры, расщепляющие АТФ до АДФ и неорганического фосфата. Т.е. миозин является одновременно ферментом АТФ-азой. Активность миозина как АТФазы значительно возрастает при его взаимодействии с актином. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Следовательно, чем больше мостиков переходят в активное состояние, тем больше расщепляется АТФ, тем сильнее сокращение. Для стимуляции АТФ-азной активности миозина требуются ионы кальция, выделяющиеся из СР, которые способствуют освобождению активных центров актина от тропамиозина. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ+ф=АТФ).Фосфагенная система ресинтеза обеспечивает наибольшую мощность сокращения, но в "связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех.молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0,5 - 2 мин. Лри этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты и снижением содержания кисдоррда. Лри продолжительной работе, с усилением.кровообращения, ресинтез АТФ начинает осуществляться с помощью окислительного фософрилирования, т.е. аэробным путем. Энергетические возможности окислительной системы значительно больше остальных. Процесс происходит за счет окисления углеводов и жиров. При интенсивной работе в основном окисляются углеводы, при умеренной жиры. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей (до ферментативного аутолиза этих белков). Возникает трупное окоченение. АТФ необходима для расслабления потому, что обеспечивает работу Са-насоса.

    Биомеханика мышечных сокращений

    Одиночное сокращение, суммация, тетанус

    При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

    1 Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около 1-2 мсек. Во время латентного периода генерируется и распространяется ЛД происходит высвобождения кальция из СР, взаимодействие актина с миозином и т.д 2.Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительности от 10 до 100 мсек., З.Период расслабления. Его длительность несколько больше, чем укорочения. Рис.

    В режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. .Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются.

    Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефрактерного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, То СуМмации не будет, потому что мышца находится в состоянии рефрактерности.

    Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса; зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис). Гладкий тетанус возникает тогда, когда каждое последующее раздражение наносится в конце периода укорочения. Т.е. имеет место полная суммация отдельных сокращений и (рис). Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук при алкогольной интоксикации и болезни Паркинсона.

    Влияние частоты и силы раздражения на амплитуду сокращения

    Если постепенно увеличивать частоту раздражения, то амплитуда тетанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной. Дальнейшее увеличение частоты раздражения сопровождается снижением силы тетанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е.Введенский. Он установил,- что каждое раздражение пороговой или сверхпороговой силы, вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении, частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

    Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону «все или ничего». Мышца подчиняется закону силы. При увеличении силы раздражения, амплитуда сокращения ее растет. Лри определенной (оптимальной) силе амплитуда становится максимальной. Если же и дальше повышать силу раздражения, амплитуда сокращения Не увеличивается и даже уменьшается за счет катодической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной возбудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе все волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

    Режимы сокра щения. Сила и работа мышц

    Различают следующие режимы мышечного сокращения:

    1.Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

    2.Изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в «основе статической работы, например при поддержании позы тела

    З.Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела, другие двигательные акты.

    Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения.мышцы, ее функционального состояния, .исходной длины, пола, возраста, степени тренированности человека.

    В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а следовательно сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон (рис.). При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами, кистевым, становым и т.д.

    Для сравнения силы различных мышц определяют их удельную ил и. абсолютную силу. Она равна максимальной, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 6,2 кг/см2, трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

    Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При.динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме. Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р * h). Работа измеряется в кГ.М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается (рис.)- Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы. Это работа выполняемая в единицу времени

    (Р = А * Т). Вт

    Утомление мышц

    Утомление - это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда (рис.). Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура. Это состояние длительного непроизвольного сокращения мышцы. Работа и утомление мышц исследуются с помощью эргографии.

    В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

    1.Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце. 2.Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена. 3.Теория Ферворна: утомление объясняется недостатком кислорода в мышце.

    Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме, интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке ЛМ.Сеченов установил, что если» наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов и угнетением синаптической передачи.

    Двигательные единицы

    Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном.мышечными волокнами. Внутри мышцы.этот аксон образует.несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне.

    Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти)» содержат небольшое количество мышечных.волокон. В крупных их в сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

    1. Медленные неутомляемые. Они образованы «красными» мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращении таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример -камбаловидная мышца.

    I1B. Быстрые, легко утомляемые. Мышечные волокйа содержат много миофибрилл и называются: «белыми». Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза ПА. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

    Физиология гладких мышц

    Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже, чем скелетных.

    Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (MB). Когда вершина медленные волны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия, сопровождающиеся сокращениями (рис). MB и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными; т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок. *

    Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок -кальмодулин.

    Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК Это явление называется мисгегшым механизмом регуляции сократительной активности.

    Физиология процессов межклеточной передачи возбуждения

    Проведение возбуждения по нервам

    Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки -дендриты и аксоны, т.е. нервные волокна. В зависимости от структуры их делят на шкотные, имеющие миелиновуто оболочку, и безмякотные. Эта оболочка формируется шванновскими клетками, являющиеся видоизмененными глиальными клетками. Они содержат миелин, который в основном состоит из липидов. Он выполняет изолирующую и трофическую функции. Одна шванновскач клетка образует оболочку на 1 мм нервного волокна. Участки, где оболочка прерывается, т.е. не покрыты миелином называют перехватами Ранвье. Ширина перехвата 1 мкм (рис.).

    Функционально все нервные волокна делят на три группы:

    1. Волокна типа Л - это толстые волокна, имеющие миелиновую оболочку. В эту группу входят 4 подтипа:

    1.1. Act - к ним относятся двигательные волокна скелетных мышц и афферентные нервы, идущие от мышечных веретен (рецепторов растяжения). Скорость проведения по ним максимальна - 70-120 м/сек

    1.2. АР - афферентные волокна, идущие от рецепторов давления и прикосновения кожи. 30 - 70 м/сек 1.3.Ау - эфферентные волокна, идущие к мышечным веретенам (15 - 30 м/сек).

    I.4.A5 - афферентные волокна от температурных и болевых рецепторов кожи (12-30 м/сек).

    2. Волокна группы В - тонкие миелинизированные волокна, являющиеся преганглионарными волокнами вегетативных эфферентных путей. Скорость проведения - 3-18 м/сек

    3.Волокна группы С, безмиелиновые постганглионарные волокна вегетативной нервной системы. Скорость 0,5 -3 м/сек.

    Проведение возбуждения по нервам подчиняется следующим законам:

    1.Закон анатомической и физиологической целостности нерва. Первая нарушается при перерезке, вторая - действии веществ блокирующих проведение, например новокаина.

    2. Закон двустороннего проведения возбуждения. Оно распространяется в обе стороны от места раздражения. В организме чаще всего возбуждение по афферентным путям оно идет к нейрону, а по эфферентным - от.нейрона Такое распространение.называется ортодромным. Очень редко возникает обратное или антидромное распространение возбуждения.

    З.Закон изолированного проведения. Возбуждение не передается с одного нервного волокна на другое, входящее в состав этого же нервного ствола

    4.Закон бездекрементного проведения. Возбуждение проводится по нервам без декремента, т.е. затухания. Следовательно, нервные импульсы не ослабляются проходя помним. 5.Скорость проведения прямо пропорциональна диаметру нерва.

    Нервные волокна обладают свойствами электрического кабеля, у которого не очень хорошая изоляция. В основе механизма проведения возбуждения лежит возникновение местных токов. В результате генерации ПД в аксонном холмике и реверсии мембранного потенциала, мембрана аксона приобретает противоположный заряд. Снаружи она становится отрицательной, внутри положительной. Мембрана нижележащего, невозбужденного участка аксона заряжена противоположным образом. Поэтому между этими участками, по наружной и внутренней поверхностям мембраны начинают проходить местные токи. Эти токи деполяризуют мембрану нижележащего невозбужденного участка нерва до критического уровня и в нем также генерируется ПД. Затем процесс повторяется и возбуждается более отдаленный участок нерва и т.д. (рис.). Т.к. по мембране безмякотного:волокна местные токи текут не прерываясь, поэтому такое проведение называется непрерывным. При непрерывном проведении местные токи захватывают большую поверхность волокна, поэтому им * фебуется. длительное время для прохождения по участку волокна В результате дальность и скорость приведения возбуждения по безмякотным волокнам небольшая.

    В мякотных волокнах, участки покрытые миелином обладают большим электрическим сопротивлением. Поэтому непрерывное проведение ПД невозможно. При генерации ПД местные токи текут лишь между соседними перехватами. Ло закону «все или ничего» .возбуждается ближайший.к аксонному холмику перехват Ранвье, затем соседний нижележащий перехват и т.д. (рис.). Такое проведение называется сальтаторным (прыжком). При этом механизме ослабления местных токов не происходит и нервные импульсы распространяются на большое расстояние и с большой скоростью.

    Сннаптическая передача Ст роение и классификация синапсов

    Синапсом называется место контакта нервной клетки с другим нейроном или исполнительным органом. Все синапсы делятся на следующие группы: 1.По механизму передачи:

    Подобные документы

      Понятие возбудимости и раздражимости, способность живых клеток воспринимать изменения внешней среды и отвечать на раздражения реакцией возбуждения. Скорость протекания циклов возбуждения в нервной ткани (лабильность). Свойств биологических мембран.

      реферат , добавлен 31.12.2012

      Сходство физической природы звука и вибрации. Действие низкочастотной вибрации на клетки и ткани организма животных и человека. Патологические процессы, возникающие в результате действия вибрации. Совместное действие шума и вибрации на живой организм.

      контрольная работа , добавлен 21.09.2009

      Сущность пищеварения, критерии его классификации. Функции желудочно-кишечного тракта. Ферменты пищеварительных соков. Строение пищеварительного центра (голод и насыщение). Процесс пищеварения в полости рта и желудке, основные механизмы его регуляции.

      презентация , добавлен 26.01.2014

      Физиология как наука о функциях и процессах, протекающих в организме, ее разновидности и предметы изучения. Возбудимые ткани, общие свойства и электрические явления. Этапы исследования физиологии возбуждения. Происхождение и роль мембранного потенциала.

      контрольная работа , добавлен 12.09.2009

      Изучение видов тканей внутренней среды – комплекса тканей, образующих внутреннюю среду организма и поддерживающих ее постоянство. Соединительная ткань – главная опора организма. Трофическая, опорно-механическая, защитная функция ткани внутренней среды.

      презентация , добавлен 12.05.2011

      Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

      реферат , добавлен 25.06.2011

      Виды эпителиальной ткани. Однослойный плоский эпителий. Мерцательный или реснитчатый, цилиндрический эпителий. Основные виды и функции соединительной ткани. Овальные тучные клетки, фибробласты. Плотная соединительная ткань. Функции нервной ткани.

      презентация , добавлен 05.06.2014

      Возбудимые ткани и их свойства. Структура и функции биологических мембран, транспорт веществ через них. Электрические явления возбудимых тканей, их характер и обоснование. Рефрактерные периоды. Законы раздражения в возбудимых тканях, их применение.

      презентация , добавлен 05.03.2015

      Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.

      презентация , добавлен 25.09.2015

      Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.

    История научных институтов биологического профиля в России идет с конца ХIХ века и начинается с укусов бешеных собак. Под впечатлением от успеха прививок от бешенства, разработанных Пастером , в конце ХIХ века в Санкт-Петербурге был создан Институт экспериментальной медицины.

    Биофизика в Советской России стала на какое-то время «баловнем судьбы». Большевики были одержимы обновлениям в обществе и демонстрировали готовность поддерживать новые направления в науке. Позже именно из этого Института вырос Институт физики Российской Академии наук.

    В Советском Союзе власти были заинтересованы в проведении научных исследований «широким фронтом». Нельзя было пропустить ни одного из перспективных направлений, которые могли бы сулить в будущем военные или экономические преимущества. До начала 90-х годов государственная поддержка обеспечивала приоритетное развитие молекулярной биологии и биофизики. В 1992 году новые власти послали ученым недвусмысленный сигнал: зарплата научного сотрудника стала меньше прожиточного минимума. Многим биофизикам, не помышляющим прежде об эмиграции, пришлось уехать на Запад.

    В первое время российская биофизика от «экономической» эмиграции пострадала незначительно. Развитие таких средств коммуникации, как электронная почта и интернет, позволило сохранить связи ученых с коллегами. Многие стали оказывать помощь своим институтам реактивами и научной литературой, продолжили исследования по «своим» темам. Из-за невозможности прожить на академическую зарплату уменьшился приток студентов в науку. Возник разрыв поколений, который теперь, после 15 лет перемен, начинает сказываться все сильнее: средний возраст сотрудников в некоторых лабораториях Академии наук уже превышает 60 лет.

    Достижения и открытия

    Российская биофизика не утратила ведущих позиций в ряде направлений, которые возглавляют ученые, получившие образование в 60-80-е годы ХХ века. Значительные открытия в науке сделаны именно этими учеными. Так, в качестве примера можно привести создание в последние годы новой науки - биоинформатики , основные достижения которой связаны с компьютерным анализом геномов . Основания этой науки были заложены еще в 60-е годы молодым биофизиком Владимиром Туманяном , который первым разработал компьютерный алгоритм анализа последовательностей нуклеиновых кислот .

    Биофизик Анатолий Ванин еще в 60-е годы открыл роль оксида азота в регуляции клеточных процессов . Позже оказалось, что оксид азота имеет важное медицинское значение. Оксид азота является основной игнальной молекулой сердечно-сосудистой системы с. За исследование роли оксида азота в этой системе была присуждена Нобелевская премия в 1998 году. На основе оксида азота был создан самый популярный в мире лекарственный препарат для повышения потенции «Виагра».

    Многие достижения в области биофизики связаны с открытой еще советскими учеными автоколебательной реакцией Белоусова-Жаботинского . Эта реакция дает пример самоорганизации в неживой природе, она послужила основанием для многих моделей модной ныне синергетики. Олег Морнев из Пущино недавно показал, что автоволны распространяются по законам оптических волн . Это открытие проливает свет на физическую природу автоволн, что также может считаться вкладом биофизиков в физику.

    Одно из самых интересных направлений современной биофизики - анализ связывания малых РНК с матричной РНК, кодирующей белки. Это связывание лежит в основании явления «РНК-интерференции» . Открытие этого явления было отмечено в 2006 году Нобелевской премией. Мировое научное сообщество возлагает огромные надежды на то, что это явление позволит бороться со многими заболеваниями.

    Важнейшим направлением молекулярной биофизики является изучение механических свойств одиночной молекулы ДНК . Развитие тонких методик биофизического и биохимического анализа позволяет следить за такими свойствами молекулы ДНК, как жесткость, способность к растяжению, изгибу и прочность на разрыв .

    Традиционно сильны позиции российских биофизиков в области теории. Георгий Гурский и Александр Заседателев разработали еорию связывания биологически активных соединений с ДНК т. Они предположили, что в основании такого связывания лежит феномен «матричной адсорбции». Исходя из этой концепции, они предложили оригинальный проект синтеза низкомолекулярных соединений. Такие соединения могут «узнавать» определенные места на молекуле ДНК и регулировать активность генов.

    Александр Заседателев успешно применяет свои разработки для создания отечественных биочипов , которые позволяют диагностировать онкологические заболевания на ранних стадиях. Под руководством Владимира Поройкова был создан комплекс компьютерных программ , позволяющих предсказывать биологическую активность химических соединений по их формулам.

    Если судить по финансовым показателям, то «пальму первенства» за наибольшие достижения следует отдать биофизику Армену Сарвазяну , который создал ряд уникальных разработок в области исследования организма человека с помощью ультразвука . Эти исследования щедро финансируются военным ведомством США: так, Сарвазяну принадлежат открытия связи между гидратацией тканей (степенью обезвоживания) и состоянием организма.

    Мировоззренческие потрясения сулят открытия Симона Шноля : он обнаружил влияние космогеофизических факторов на течение физических и биохимических реакций . Речь идет о том, что известный закон Гаусса, или нормального распределения ошибок измерений. В реальности все происходящие процессы обладают определенными «спектральными» характеристиками, обусловленными анизотропией пространства.

    Наиболее значимыми для всех людей, живущих на нашей планете, могут оказаться исследования биофизика Алексея Карнаухова . Его климатические модели предсказывают, что нас ожидает глобальное похолодание, которому будет предшествовать потепление . Течение Гольфстрим, которое согревает Северную Европу, перестанет приносить тепло из Атлантики из-за того, что встречное ему лабрадорское течение из-за таяния ледников и увеличения стока северных рек будет опресняться, благодаря этому станет легче и перестанет «подныривать» под Гольфстрим.

    Исследования Роберта Бибилашвили из Кардиологического центра привели к значительным результатам в вопросах излечения ряда заболеваний, считавшихся ранее неизлечимыми. Оказалось, что своевременное вмешательство (впрыскивание в участки мозга больных, пораженных инсультом, фермента урокиназы) способно полностью снять последствия даже очень тяжелых приступов! Урокиназа - это фермент, который образуется клетками крови и сосудов и является одним из компонентов системы, препятствующей развитию тромбозов.

    Из последних достижений зарубежных ученых можно отметить два: во-первых, группа американских исследователей из Университета Мичиган под руководством С.Дж. Вайса открыла один из генов, ответственных за «трехмерность» развития биологической ткани , во-вторых, ученые из Японии показали, что механические напряжения помогают создать искусственные сосуды. Японские ученые поместили стволовые клетки внутрь полиуретановой трубки и пропускали через трубку жидкость под переменным давлением. Параметры пульсирования и структуры механических напряжений были примерно теми же, что и в реальных человеческих артериях. Результат обнадеживает - стволовые клетки «превратились» в клетки выстилки кровеносных сосудов.

    Что такое биофизика

    Человек стремится познать мир. В этих дерзаниях человек опирается на науку и технику. Громадные радиотелескопы услышали "голос" далеких галактик, прочные батискафы помогли открыть на дне океана новый мир с невиданными животными, мощные ракеты вышли из сферы земного притяжения и открыли дорогу в космос...

    Есть в окружающей нас природе еще одна "крепость". Это сама жизнь. Да, жизнь, живой организм, живая клетка - невидимый глазом комочек протоплазмы (или цитоплазмы) с ядром, заключенный в оболочку,- одно из самых загадочных явлений в мире. И эта "крепость" должна сдаться, мощное оружие - ум человека срывает покровы с микроскопических миров живых клеток, проникая в самую сущность жизни.
    Изучение человеком природы идет сейчас так стремительно и приводит к таким неожиданным результатам и выводам, что они не укладываются в рамки старых наук. Например, физика - одна из наиболее важных наук о природных явлениях - развилась так широко, что возникла потребность выделить новые, самостоятельные области - квантовую физику, ядерную, физику твердого тела, астрономическую, радиофизику и др. Процесс расширения и углубления человеческих знаний о природе привел к появлению и таких разделов наук, которые изучают процессы и явления, относящиеся одновременно к различным областям знания.
    Такой пограничной наукой, возникшей на стыке биологии, физики и химии, является биофизика, играющая особую роль в изучении свойств живой материи.
    Биофизика - это наука о физических и физико-химических процессах и их регулировании в живом организме.
    От биофизики в свою очередь отпочковываются новые науки, расширяющие горизонты человеческих знаний. Так выделилась радиобиология - наука о действии различных видов радиации на живые организмы; космическая биология - наука, изучающая особенности жизни в космосе; механохимия, исследующая взаимное превращение химической и механической энергии, происходящее в мышечных волокнах; совсем недавно возникла бионика, изучающая живые организмы с целью использовать принципы их работы для создания новых, совершенных по конструкции приборов и аппаратов.
    Рассказ об этих научных дисциплинах, входящих в биофизику, занял бы слишком много места, поэтому мы расскажем лишь о трех главных направлениях, развиваемых сегодня в биофизике, о трех ее отделах - молекулярной биофизике, клеточной и биофизике процессов управления.
    Каждая наука, и биофизика в том числе, состоит из двух частей - теоретической и экспериментальной, тесно связанных друг с другом, взаимно дополняющих друг друга. Но между ними есть и различия. Теоретическая биофизика изучает первичные явления и процессы, происходящие в биологических молекулах, на модельных, как говорят ученые, веществах, т. е. на выделенных из живого организма или искусственно созданных системах. Вот на таких модельных системах изучают основные процессы фотосинтеза, природу биопотенциалов, биолюминесценцию и другие явления.
    Экспериментальная же (прикладная) биофизика изучает работу организма в целом и его отдельных органов, используя методы и подходы теоретической биофизики (биофизика движения, зрения, регулирования физиологических функций).
    Один из больших отделов биофизики, как уже было сказано, называется молекулярной биофизикой. Этот отдел изучает свойства биологических молекул, физико-химические процессы, происходящие в чувствительных клетках, их взаимосвязь с клеточными структурами. Особое внимание уделяется при этом изучению свойств ферментов - белков, обладающих свойством ускорять (катализировать) биохимические реакции в живых организмах.
    Благодаря успехам молекулярной биофизики люди узнали много нового о том, как хранится и передается информация в живых клетках, как происходит передвижение молекул и ионов, как идет синтез белков, как запасается энергия в живых клетках. Молекулярная биофизика помогает в изучении фотосинтеза.
    Все видели зеленые листья растений. Но, наверное, не все знают, какие удивительные процессы происходят в обыкновенном листе березы или черемухи, яблони или пшеницы. Солнце посылает на Землю колоссальное количество энергии, которая пропадала бы без пользы, если бы не зеленые листья, улавливающие ее, создающие с ее помощью органическое вещество и тем самым дающие жизнь всему живому на Земле.
    Этот весьма важный процесс протекает в зеленых частицах, находящихся в клетках листа, - хлоропластах, содержащих растительные пигменты - хлорофилл и каротиноиды.
    Порции световой энергии поглощаются пигментами и производят фотоокисление воды: она отдает свой электрон молекуле хлорофилла, а затем и протон используется для восстановления углекислого газа до углеводов. (Протон и электрон, как известно, составляют атом водорода; этот атом по частям отнимается у молекулы воды. Вода окисляется и присоединяется к углекислому газу, и получаются углеводы.) Остаток же воды (его называют гидроксилом) разлагается особыми ферментами, образуя кислород, которым дышит все живое.
    Мы рассказали очень сжато о фотосинтезе. На самом деле превращение световой энергии, поглощенной хлорофиллом, в химическую энергию веществ, синтезированных в зеленом листе, представляет собой бесконечную цепь молекулярных изменений. Во время этого процесса электроны переходят с одних молекул на другие, образуются и распадаются молекулы соединений, обладающие большой энергией, происходят сотни тысяч реакций.
    Над разгадкой этого процесса также много трудились биофизики, и выяснению его деталей мы обязаны молекулярной биофизике.
    Можно задать вопрос: а для чего так долго и упорно бьются ученые над тайной зеленого листа? Дело в том, что зеленый лист - это как бы миниатюрный "завод", вырабатывающий вещества, составляющие основу питания человека. Подсчитано, что в качестве сырья зеленые растения потребляют в год громадные количества углекислого газа - 150 000 000 000 г! Если ученые разгадают до конца великую тайну зеленого листа, человечество получит самый быстрый и самый экономичный способ получения питания и других важных продуктов, одним словом, все то, что сегодня дают человеку зеленые растения.
    Молекулярная биофизика занимается также и процессами, которые протекают в животных организмах, например в их органах чувств.
    Одна из таких удивительных и необычайных страниц молекулярной биофизики - изучение запаха. Химики создали около 1 млн. органических соединений, и почти все они имеют свой характерный запах. Человек может различать несколько тысяч запахов, причем для некоторых веществ достаточно исключительно малых количеств, чтобы их ощутить, - всего миллионные и миллиардные доли миллиграмма на литр воды (например, таких веществ, как скатол, тринитробутилтолуол, [достаточною-7-Ю-9 мг/л).
    Животные оказываются чувствительнее человека. Собаки, например, различают около полумиллиона различных запахов! Они способны (особенно собаки-ищейки) чувствовать нужный запах, даже если он ничтожно слаб. Стоит человеку только чуть-чуть прикоснуться к предмету - и собака уже может определить, кто это сделал. Известны случаи, когда натренированные собаки-ищейки помогали геологам находить руду, лежащую под землей на глубине 2-3 м.
    Но, пожалуй, всех превосходят рыбы и насекомые. Некоторые рыбы ощущают пахучее вещество при его неизмеримо малом содержании-10" мг/л. Это все равно, что растворить одну каплю вещества в 100 млрд. м3 воды! Бабочки находят друг друга по запаху на расстоянии нескольких километров. Расчеты показывают, что в таком случае бабочки обнаруживают чуть ли не одну молекулу пахучего вещества, приходящуюся на 1 мг воздуха. Как это происходит, остается пока загадкой. Некоторые ученые предполагают, что пахучие вещества распространяют электромагнитные волны, энергия которых воспринимается чувствительными клетками насекомых и помогает им находить друг друга на таких больших расстояниях.
    Недавно внимание биофизиков привлекла необычная способность некоторых видов мух. Оказывается, муха, коснувшись лапками какого-либо вещества, мгновенно производит точный химический анализ. Механизм этого явления неизвестен, но установлено, что особые чувствительные клетки на лапках определяют "вкус" вещества электромагнитным путем!
    Молекулярная биофизика помогает выяснить не только различия в чувствительности и строении органов обоняния у различных групп животных, рыб и насекомых, но и сам процесс определения запаха. Сейчас установлено, что имеется несколько основных (6-7) запахов, сочетаниями которых объясняется все их многообразие. Этим основным запахам соответствуют определенные типы обонятельных клеток, воспринимающих запах. В клетках есть молекулярные по размерам углубления строго определенной формы и размера, соответствующие форме молекул пахучих веществ (молекула камфары имеет подобие шара, молекула мускуса - диска и т. д.). Попадая в "свое" углубление, молекула раздражает нервные окончания и создает ощущение запаха.
    Даже из краткого рассказа видно, что существует тесная связь между изучением клеток и молекулярных процессов, происходящих в них, т. е. между молекулярной и клеточной биофизикой. Одна из них изучает молекулярные изменения, свойства биологических молекул, а также те системы, которые образуют молекулы в клетках (как говорят, субмолекулярные образования), их свойства и изменения, а другая исследует свойства и функционирование клеток - выделительных, сократительных, обонятельных и др.
    Развитию биофизики клетки, о которой мы сейчас расскажем, во многом способствовало изобретение электронного микроскопа. Применение электронного микроскопа с увеличением в сотни тысяч, миллионы раз намного расширило наши знания о живых организмах, населяющих планету, о их внутреннем строении. При исследовании клетки электронным микроскопом сразу открылся новый мир ультрамикроскопических (самых мельчайших) клеточных структур. Электронные микроскопы позволили увидеть различной толщины мембраны, мельчайшие трубочки, в сотни тысяч раз тоньше человеческого волоса, крохотные пузырьки, полости, канальцы. Исследования показали, что даже самые мелкие клеточные структуры - митохондрии, хлоропласты - тоже имеют довольно сложное строение. Стало ясно, что любая клетка, кажущаяся простым комочком протоплазмы с ядром, представляет собой сложное образование с большим числом мельчайших клеточных частиц (как говорят, структурных элементов), действующих в строгом порядке и связанных между собой сложно, точно и согласованно.
    Особенно поразило исследователей многообразие структурных элементов. Например, в нервной клетке находится до 70 тыс. частиц - митохондрий, благодаря которым клетка дышит и получает энергию для своей деятельности. Кроме того, в клетке находится до сотни тысяч самых мелких частиц - рибосом, создающих белковые молекулы.
    Самое удивительное то, что в любой маленькой клеточке живого организма происходят точные согласованные процессы: идет поглощение необходимых веществ и выделение ненужных, происходит дыхание, деление. Наряду с этим клетки выполняют специальные функции: клетки сетчатки глаза определяют силу и качество света, клетки слизистой оболочки носа определяют запах веществ, клетки различных желез выделяют особые вещества - ферменты, способствующие пищеварению, и гормоны, помогающие росту и развитию организма.
    О всей своей большой работе - увиденном, услышанном, опознанном - клетки сообщают нервными электрическими импульсами в головной мозг - главный координирующий центр. Как клетки получают необходимые сведения из окружающего пространства, как эти сведения зашифрованы в электрических сигналах-импульсах, как образуются биологические потенциалы в клетках, какова связь с головным мозгом - все эти и многие другие вопросы изучает биофизика клетки.
    Недавно в области биофизики клетки сделано важное открытие. Давно известно, что многие живые организмы обладают способностью к свечению - люминесценцией. Сильно свечение многих обитателей морей - рыб, губок, звезд и т. д. Но оказывается, клетки любых организмов обладают люминесценцией - так называемым сверхслабым свечением. Этот свет столь ничтожен, что обнаружить его могут лишь особые приборы - фотоэлектронные умножители, способные в миллионы раз усиливать падающий световой поток. Сверхслабое свечение наблюдается в корешках и листьях растений, в клетках различных органов животных. Сверхслабое свечение присуще всем клеткам живых организмов и происходит в результате биохимических реакций, протекающих в клетках.
    Ученые выяснили, что сверхслабое свечение имеет свои особенности у различных групп животных, насекомых и растений. По интенсивности сверхслабого свечения биофизики уже сейчас могут определить засухо- и морозоустойчивость сельскохозяйственных растений (ячмень, пшеница) и тем самым помочь селекционерам и физиологам растений в выведении нужных сортов.
    Мы уже рассказывали, что все клетки взаимосвязаны, что идущие в них реакции, несмотря на их сложность, протекают с удивительной правильностью и постоянством, говорили мы и о тесной связи всех клеток с головным мозгом. Эти особенности клеток, органов и целого организма изучает возникший совсем недавно отдел науки - биофизика процессов управления и регуляции.
    Расскажем о работе этого отдела на следующем примере. Каждый орган человека состоит из бесчисленного количества клеток, часто выполняющих специфическую работу. Например, большую роль в обонянии играет слизистая оболочка носа - так называемый обонятельный эпителий. Слизистая оболочка занимает площадь не более 4 с но содержит чуть ли не 500 млн. обонятельных клеток-рецепторов. Сведения о их работе передаются в обонятельный нерв по нервным волокнам, число которых достигает 50 млн., и далее в мозг. Отделы мозга - полушария головного мозга - содержат 2 1010 клеток, а в мозжечке их еще больше-10й. Даже] трудно себе представить, какой поток информации получает мозг каждую секунду от всех органов и тканей.
    Сигналы, идущие от клеток в виде первичных электрических импульсов, должны быть правильно расшифрованы, затем необходимо принять соответствующие "решения" и передать ответные сигналы - указания о том, как должны работать те или иные клетки, ткани или органы в целом в определенных условиях. Ясно, что в центральную нервную систему поступают тысячи разнообразных сигналов из внешней среды в виде звуков, света, запахов и пр. Таким образом, | мы видим, насколько сложны взаимосвязи в любом организме, как сложна работа по управлению клетками, регулированию их состояния, контролю за согласованностью всех жизненных процессов.
    Этот важный отдел биофизики опирается на законы, открытые другой наукой - кибернетикой. Пользуясь ее методами, биофизики, изучающие процессы управления и регулирования, разработали электронные модели живых организмов, органов, клеток и даже отдельных процессов, происходящих в этих клетках. Такие электронные модели (например, электронная черепаха, электронная нервная клетка, электронная модель процесса фотосинтеза) облегчают изучение всех | сложных явлений регуляции в живом организме.
    Биофизики, изучающие регуляцию и управление в живом организме, выяснили, что как клетки, так и органы живых организмов представляют собой систему, обладающую удивительным свойством. Клетки и органы, как говорят биофизики,- это САМО-регулирующиеся, САМОорганизующиеся, САМОнастраивающиеся, САМОобучающиеся системы, т. е. вся их работа, необычные качества и свойства, характеризующие их, постоянство состава среды внутри них и выполняемой ими работы - все обусловлено процессами, протекающими в них самих.
    Чтобы немного подробнее представить себе работу биофизиков, расскажем об одном интересном направлении, возникшем на основе биофизики и уже оформившемся в самостоятельную биофизическую науку - бионику.
    Это наука, которая изучает живые организмы для создания совершенных искусственных систем, машин и приборов. Результаты исследований биоников показали, что инженерам-конструкторам всех специальностей есть чему поучиться у природы. Вот несколько примеров.
    В конструкцию современных электронных вычислительных машин входит большое количество различных деталей (полупроводниковые диоды, триоды, сопротивления, конденсаторы и т. д.). Размеры электронных вычислительных машин зависят от того, сколько таких деталей (элементов) находится в 1 см3 машины. Чем больше рабочих элементов в 1 см3 (так называемая плотность монтажа), тем более емка "память" машины, больше возможностей проводить нужные операции, лучше работа. Оказывается, что если наивысшая плотность монтажа в технических схемах машин достигает 2000 элементов в 1 слг3, то плотность монтажа элементов мозга в 50 тыс. раз больше: 100 ООО ООО элементов в 1 см3.

    Отличие живых организмов от самых сложных современных машин и приборов проявляется не только в строении, но и в свойствах. Возьмем, к примеру, органы зрения. Глаза у животных не только разной величины - от микроскопически малых у муравья (0,1 мм) до гигантских (20-30 см) у кальмаров, - но отличаются и другими свойствами.
    Оказывается, глаз рыбы-мечехйоста способен усиливать контраст между краем видимого изображения и общим фоном, так что предмет становится резко очерченным - подобно тому как это делают на экране телевизора, усиливая или ослабляя контраст. Интересным свойством обладает также глаз обыкновенной болотной лягушки. Известно, что лягушка питается только движущейся пищей - мухами, мошками, жучками. Но если насекомое не движется, лягушка никогда не найдет свою пищу и останется голодной: ее глаз воспринимает лишь движущиеся предметы, оставляя без внимания фон.
    Давно было известно, что ночные лесные птицы (филин, сова) отлично видят в темноте, но совсем недавно выяснилась необычайная способность некоторых животных (лягушки, мыши) видеть даже "невидимые" ионизирующие лучи - рентгеновскую и космическую радиацию.
    Природа оказалась исключительным конструктором, достигшим необычайных высот мастерства и в области слуха. Опыты показали, что человеческое ухо по своей чувствительности способно воспринимать звуки, ничтожно малую интенсивность которых даже трудно себе представить. Ее можно сравнить разве что с "шумом", с которым происходит тепловое движение молекул! Не менее поразителен слуховой орган кузнечика, расположенный у него на ножке. Этот орган позволяет кузнечику чувствовать колебания, размах которых (амплитуда) составляет половину диаметра атома водорода! Чувствительность слуха кузнечика настолько высока, что, находясь в Москве, он может воспринимать самые малые землетрясения, происходящие в районе Дальнего Востока.
    Бионика стремится познать все необычные свойства живых организмов и применить полученные данные для создания машин и приборов. Например, ученые разрабатывают прибор, который даст возможность слепым читать книги, набранные обычным типографским шрифтом. Уже создана модель искусственной руки, управляемой мыслью человека, точнее говоря, биопотенциалами, возникающими в мышцах. На основе изучения глаз пчелы и стрекозы (у них, кстати, очень большой угол зрения - 240-300°) конструкторы создали прибор - небесный компас, используемый при движении судов, самолетов. Изучение медузы помогло сконструировать прибор, предупреждающий о наступлении шторма почти за 15 часов. Список приборов, разработанных биониками, весьма большой, и даже простое их перечисление заняло бы много времени.
    Но бионики не только копируют функции и строение отдельных органов животных. Они исследуют и используют особенности передачи информации у насекомых, птиц, рыб. Результаты этих работ очень интересны. Так, недавно стало известно, что комары поддерживают между собой связь с помощью электромагнитных волн миллиметрового диапазона (13-17 мм), причем дальность действия комариной "радиостанции" - 15 м\ Записаны звуки, издаваемые комарами при "испуге", "страшной опасности" (например, при появлении летучей мыши). Ученые работают над созданием ультразвуковых аппаратов, отпугивающих вредных насекомых и привлекающих полезных. (О бионике также см. ст. "Что такое техническая кибернетика и бионика".)

    Мы рассказали лишь о небольшой части исследований, проводимых биофизиками, но примеров можно было бы привести значительно больше как в области изучения молекул, клеток, так и организма в целом. Наш век - это время великих свершений во всех областях знания, в том числе в познании живой природы.

    А.П. Дубов

    Размещение фотографий и цитирование статей с нашего сайта на других ресурсах разрешается при условии указания ссылки на первоисточник и фотографии.

    Похожие статьи